kpick.classifier package
Subpackages
- kpick.classifier.cifar_classification_models package
- Submodules
- kpick.classifier.cifar_classification_models.alexnet module
- kpick.classifier.cifar_classification_models.densenet module
- kpick.classifier.cifar_classification_models.preresnet module
- kpick.classifier.cifar_classification_models.resnet module
- kpick.classifier.cifar_classification_models.resnet_roi module
- kpick.classifier.cifar_classification_models.resnext module
- kpick.classifier.cifar_classification_models.vgg module
- kpick.classifier.cifar_classification_models.wrn module
- Module contents
- kpick.classifier.classification_utils package
- kpick.classifier.models package
Submodules
kpick.classifier.basic_classification_models module
- class kpick.classifier.basic_classification_models.MobileNetV2(*args: Any, **kwargs: Any)
Bases:
Module
- forward(x)
- kpick.classifier.basic_classification_models.Net(model_name, **kwargs)
kpick.classifier.classifier_base module
- class kpick.classifier.classifier_base.BasCifarClassfier
Bases:
object
- adjust_learning_rate(epoch)
- arrays2tensors(ims, transform)
- get_data(net_args)
- get_model(net_args, net_train_args=None)
- init(net_args=None, net_train_args=None, train=False)
- load_model(model, checkpoint_path, input_shape=None, run_tensorRT=False, fc2conv=False)
- load_model_gpu(model, checkpoint_path, fc2conv=False)
- model2trt(input_shape)
- predict_array(im, transform)
- predict_arrays(ims, Dataset, transform, print_info=True)
- predict_arrays_m(ims, transform, print_info=True)
- predict_rgbd(rgbd)
- predict_rgbds(rgbds)
- resume()
- save_checkpoint(state, is_best)
- test()
- train()
- trainval()
- class kpick.classifier.classifier_base.RGBDLoader(args, rgbds, transform)
Bases:
object
kpick.classifier.classifier_base_org module
- class kpick.classifier.classifier_base_org.BasCifarClassfier(args=None, cfg_path=None, name='unnamed', train=False)
Bases:
BasObj
- adjust_learning_rate(epoch)
- arrays2tensors(ims, transform)
- get_data()
- get_model()
- load_model(run_tensorRT=False, input_shape=None)
- predict_array(im, transform)
- predict_arrays(ims, Dataset, transform, print_info=True)
- predict_arrays_m(ims, transform, print_info=True)
- predict_rgbd(rgbd)
- predict_rgbds(rgbds)
- resume()
- save_checkpoint(state, is_best)
- test()
- train()
- trainval()
- class kpick.classifier.classifier_base_org.RGBDLoader(args, rgbds, transform)
Bases:
object
kpick.classifier.roi_classifier module
- class kpick.classifier.roi_classifier.RoiCifarClassfier
Bases:
BasCifarClassfier
- crop_and_concate_roi_tensor(im_tensors, box_tensors, ind_tensors, scaling, isSameSize=False)
- forward(tensors, model)
- init(net_args, net_train_args=None, train=False)
- predict_tensor_rois(im_tensors, boxes, model, net_args, scaling, inds=None, isSameSize=False)
- test_conv()