kpick.classifier package
Subpackages
- kpick.classifier.cifar_classification_models package
- Submodules
 - kpick.classifier.cifar_classification_models.alexnet module
 - kpick.classifier.cifar_classification_models.densenet module
 - kpick.classifier.cifar_classification_models.preresnet module
 - kpick.classifier.cifar_classification_models.resnet module
 - kpick.classifier.cifar_classification_models.resnet_roi module
 - kpick.classifier.cifar_classification_models.resnext module
 - kpick.classifier.cifar_classification_models.vgg module
 - kpick.classifier.cifar_classification_models.wrn module
 - Module contents
 
 - kpick.classifier.classification_utils package
 - kpick.classifier.models package
 
Submodules
kpick.classifier.basic_classification_models module
- class kpick.classifier.basic_classification_models.MobileNetV2(*args: Any, **kwargs: Any)
 Bases:
Module- forward(x)
 
- kpick.classifier.basic_classification_models.Net(model_name, **kwargs)
 
kpick.classifier.classifier_base module
- class kpick.classifier.classifier_base.BasCifarClassfier
 Bases:
object- adjust_learning_rate(epoch)
 
- arrays2tensors(ims, transform)
 
- get_data(net_args)
 
- get_model(net_args, net_train_args=None)
 
- init(net_args=None, net_train_args=None, train=False)
 
- load_model(model, checkpoint_path, input_shape=None, run_tensorRT=False, fc2conv=False)
 
- load_model_gpu(model, checkpoint_path, fc2conv=False)
 
- model2trt(input_shape)
 
- predict_array(im, transform)
 
- predict_arrays(ims, Dataset, transform, print_info=True)
 
- predict_arrays_m(ims, transform, print_info=True)
 
- predict_rgbd(rgbd)
 
- predict_rgbds(rgbds)
 
- resume()
 
- save_checkpoint(state, is_best)
 
- test()
 
- train()
 
- trainval()
 
- class kpick.classifier.classifier_base.RGBDLoader(args, rgbds, transform)
 Bases:
object
kpick.classifier.classifier_base_org module
- class kpick.classifier.classifier_base_org.BasCifarClassfier(args=None, cfg_path=None, name='unnamed', train=False)
 Bases:
BasObj- adjust_learning_rate(epoch)
 
- arrays2tensors(ims, transform)
 
- get_data()
 
- get_model()
 
- load_model(run_tensorRT=False, input_shape=None)
 
- predict_array(im, transform)
 
- predict_arrays(ims, Dataset, transform, print_info=True)
 
- predict_arrays_m(ims, transform, print_info=True)
 
- predict_rgbd(rgbd)
 
- predict_rgbds(rgbds)
 
- resume()
 
- save_checkpoint(state, is_best)
 
- test()
 
- train()
 
- trainval()
 
- class kpick.classifier.classifier_base_org.RGBDLoader(args, rgbds, transform)
 Bases:
object
kpick.classifier.roi_classifier module
- class kpick.classifier.roi_classifier.RoiCifarClassfier
 Bases:
BasCifarClassfier- crop_and_concate_roi_tensor(im_tensors, box_tensors, ind_tensors, scaling, isSameSize=False)
 
- forward(tensors, model)
 
- init(net_args, net_train_args=None, train=False)
 
- predict_tensor_rois(im_tensors, boxes, model, net_args, scaling, inds=None, isSameSize=False)
 
- test_conv()