kpick.classifier package

Subpackages

Submodules

kpick.classifier.basic_classification_models module

class kpick.classifier.basic_classification_models.MobileNetV2(*args: Any, **kwargs: Any)

Bases: Module

forward(x)
kpick.classifier.basic_classification_models.Net(model_name, **kwargs)
class kpick.classifier.basic_classification_models.ResNet(*args: Any, **kwargs: Any)

Bases: Module

forward(x)
class kpick.classifier.basic_classification_models.SimpleNet(*args: Any, **kwargs: Any)

Bases: Module

forward(x)

kpick.classifier.classifier_base module

class kpick.classifier.classifier_base.BasCifarClassfier

Bases: object

adjust_learning_rate(epoch)
arrays2tensors(ims, transform)
get_data(net_args)
get_model(net_args, net_train_args=None)
init(net_args=None, net_train_args=None, train=False)
load_model(model, checkpoint_path, input_shape=None, run_tensorRT=False, fc2conv=False)
load_model_gpu(model, checkpoint_path, fc2conv=False)
model2trt(input_shape)
predict_array(im, transform)
predict_arrays(ims, Dataset, transform, print_info=True)
predict_arrays_m(ims, transform, print_info=True)
predict_rgbd(rgbd)
predict_rgbds(rgbds)
resume()
save_checkpoint(state, is_best)
test()
train()
trainval()
class kpick.classifier.classifier_base.RGBDLoader(args, rgbds, transform)

Bases: object

kpick.classifier.classifier_base_org module

class kpick.classifier.classifier_base_org.BasCifarClassfier(args=None, cfg_path=None, name='unnamed', train=False)

Bases: BasObj

adjust_learning_rate(epoch)
arrays2tensors(ims, transform)
get_data()
get_model()
load_model(run_tensorRT=False, input_shape=None)
predict_array(im, transform)
predict_arrays(ims, Dataset, transform, print_info=True)
predict_arrays_m(ims, transform, print_info=True)
predict_rgbd(rgbd)
predict_rgbds(rgbds)
resume()
save_checkpoint(state, is_best)
test()
train()
trainval()
class kpick.classifier.classifier_base_org.RGBDLoader(args, rgbds, transform)

Bases: object

kpick.classifier.roi_classifier module

class kpick.classifier.roi_classifier.RoiCifarClassfier

Bases: BasCifarClassfier

crop_and_concate_roi_tensor(im_tensors, box_tensors, ind_tensors, scaling, isSameSize=False)
forward(tensors, model)
init(net_args, net_train_args=None, train=False)
predict_tensor_rois(im_tensors, boxes, model, net_args, scaling, inds=None, isSameSize=False)
test_conv()

Module contents