kpick.classifier.classification_utils package
Subpackages
- kpick.classifier.classification_utils.progress package
- Subpackages
- kpick.classifier.classification_utils.progress.progress package
- Submodules
- kpick.classifier.classification_utils.progress.progress.bar module
- kpick.classifier.classification_utils.progress.progress.counter module
- kpick.classifier.classification_utils.progress.progress.helpers module
- kpick.classifier.classification_utils.progress.progress.spinner module
- Module contents
- kpick.classifier.classification_utils.progress.progress package
- Submodules
- kpick.classifier.classification_utils.progress.setup module
- kpick.classifier.classification_utils.progress.test_progress module
- Module contents
- Subpackages
Submodules
kpick.classifier.classification_utils.eval module
- kpick.classifier.classification_utils.eval.accuracy(output, target, topk=(1,))
Computes the precision@k for the specified values of k
kpick.classifier.classification_utils.logger module
- class kpick.classifier.classification_utils.logger.Logger(fpath, title=None, resume=False)
Bases:
object
Save training process to log file with simple plot function.
- append(numbers)
- close()
- plot(names=None)
- set_names(names)
- class kpick.classifier.classification_utils.logger.LoggerMonitor(paths)
Bases:
object
Load and visualize multiple logs.
- plot(names=None)
- kpick.classifier.classification_utils.logger.savefig(fname, dpi=None)
kpick.classifier.classification_utils.misc module
Some helper functions for PyTorch, including: - get_mean_and_std: calculate the mean and std value of dataset. - msr_init: net parameter initialization. - progress_bar: progress bar mimic xlua.progress.
- class kpick.classifier.classification_utils.misc.AverageMeter
Bases:
object
Computes and stores the average and current value Imported from https://github.com/pytorch/examples/blob/master/imagenet/main.py#L247-L262
- reset()
- update(val, n=1)
- kpick.classifier.classification_utils.misc.get_mean_and_std(dataset)
Compute the mean and std value of dataset.
- kpick.classifier.classification_utils.misc.init_params(net)
Init layer parameters.
- kpick.classifier.classification_utils.misc.mkdir_p(path)
make dir if not exist
kpick.classifier.classification_utils.visualize module
- kpick.classifier.classification_utils.visualize.make_image(img, mean=(0, 0, 0), std=(1, 1, 1))
- kpick.classifier.classification_utils.visualize.show_batch(images, Mean=(2, 2, 2), Std=(0.5, 0.5, 0.5))
- kpick.classifier.classification_utils.visualize.show_mask(images, masklist, Mean=(2, 2, 2), Std=(0.5, 0.5, 0.5))
- kpick.classifier.classification_utils.visualize.show_mask_single(images, mask, Mean=(2, 2, 2), Std=(0.5, 0.5, 0.5))
Module contents
Useful utils