kpick.classifier.cifar_classification_models package
Submodules
kpick.classifier.cifar_classification_models.alexnet module
AlexNet for CIFAR10. FC layers are removed. Paddings are adjusted. Without BN, the start learning rate should be 0.01 (c) YANG, Wei
- kpick.classifier.cifar_classification_models.alexnet.alexnet(**kwargs)
AlexNet model architecture from the “One weird trick…” paper.
kpick.classifier.cifar_classification_models.densenet module
- kpick.classifier.cifar_classification_models.densenet.densenet(**kwargs)
Constructs a ResNet model.
kpick.classifier.cifar_classification_models.preresnet module
- kpick.classifier.cifar_classification_models.preresnet.preresnet(**kwargs)
Constructs a ResNet model.
kpick.classifier.cifar_classification_models.resnet module
- kpick.classifier.cifar_classification_models.resnet.resnet(**kwargs)
Constructs a ResNet model.
kpick.classifier.cifar_classification_models.resnet_roi module
- kpick.classifier.cifar_classification_models.resnet_roi.resnet_roi(**kwargs)
Constructs a ResNet model.
kpick.classifier.cifar_classification_models.resnext module
- kpick.classifier.cifar_classification_models.resnext.resnext(**kwargs)
Constructs a ResNeXt.
kpick.classifier.cifar_classification_models.vgg module
VGG for CIFAR10. FC layers are removed. (c) YANG, Wei
- class kpick.classifier.cifar_classification_models.vgg.VGG(features, num_classes=1000)
Bases:
Module
- forward(x)
- training: bool
- kpick.classifier.cifar_classification_models.vgg.vgg11(**kwargs)
VGG 11-layer model (configuration “A”)
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
- kpick.classifier.cifar_classification_models.vgg.vgg11_bn(**kwargs)
VGG 11-layer model (configuration “A”) with batch normalization
- kpick.classifier.cifar_classification_models.vgg.vgg13(**kwargs)
VGG 13-layer model (configuration “B”)
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
- kpick.classifier.cifar_classification_models.vgg.vgg13_bn(**kwargs)
VGG 13-layer model (configuration “B”) with batch normalization
- kpick.classifier.cifar_classification_models.vgg.vgg16(**kwargs)
VGG 16-layer model (configuration “D”)
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
- kpick.classifier.cifar_classification_models.vgg.vgg16_bn(**kwargs)
VGG 16-layer model (configuration “D”) with batch normalization
- kpick.classifier.cifar_classification_models.vgg.vgg19(**kwargs)
VGG 19-layer model (configuration “E”)
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
- kpick.classifier.cifar_classification_models.vgg.vgg19_bn(**kwargs)
VGG 19-layer model (configuration ‘E’) with batch normalization
kpick.classifier.cifar_classification_models.wrn module
- kpick.classifier.cifar_classification_models.wrn.wrn(**kwargs)
Constructs a Wide Residual Networks.