Prerequisites
Python
Kpick has been tested with Python3 (verion>=3.6)
Ubuntu
Kpick has been tested with Ubuntu 16.04 and 18.04
CUDA and CUDDNN
Kpick has been tested with CUDA >= 10.0 and CUDNN>=7
1. Install NVIDIA driver
check GPU info
sudo lshw -C display or hwinfo --gfxcard --short
Install
sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt update reboot
Open ‘Software and update/ Addtional Drivers’ and select proper driver
reboot
2. Install CUDA
Download *.run file from Cuda archive
sudo sh cuda_XXX.run
Follow the command line promts:
Note
Answer ‘NO’ for question “Install NVIDIA Accelerated Graphics Driver for Linux-XXX?”
3. Install CUDNN
Download CUDNN from Cudnn archive
Extract tar file
sudo cp /cuda/include/* /usr/loca/cuda-XX/include sudo cp /cuda/lib64/* /usr/local/cuda-XX/lib64
4. Set up CUDA path
Open bashrc in sudo mode
sudo gedit ~/.bashrc
Add 2 lines to the file
PATH=/usr/local/cuda/bin:$PATH LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
Activate changes
source ~/.bashrc
Create cuda configuration file
sudo gedit /etc/ld.so.conf.d/cuda.conf
Add: /usr/local/cuda/lib64 into file
Active configuration
sudo ldconfig
Reboot system
reboot
Virtualenv
We highly recommend using a Python environment management system, in particular Virtualenv.
virtualenv venv --python=python3.6
source venv/bin/activate
Dependencies
Pytorch > 1.4.0
Cython
pip install Cython
Pip Installation
1. Install KETI SDK
git clone https://github.com/keti-ai/ketisdk
cd ketisdk
pip install -e .
2. Install Kpick
git clone https://github.com/keti-ai/kpick-devel.git
cd kpick-devel
pip install -e .
3. Avoid conflicts
To avoid conflicts, each package should NOT INCLUDE by each other.
Please use "ip install -e ." instead for make a soft link to a package.